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Neural Convolutional Seismic Amplitude Attribute Conv4_4-A: enhancing structural resolution 

 

Abstract 

 

Convolutional Neural Networks (ConvNet) have been created to process images and encode their 

features into parameters which opportunely trained can allow the ConvNet to recognize and classify 

maps similar to those which were presented to the network as ground true labels during the training 

phase. 

 Main application fields are in computer vision like face recognition, localization and detection for 

autonomous driving and robotics. 

This process is called "supervised learning" because we teach the Network the kind of images it 

should recognize, classify, localize and detect. 

In computer vision, training data are ideally bias-free. They are images or maps taken from a camera 

perhaps from different point of observation. In alternative they can additionally be extracted from a 

unique image through data-augmentation. 

 

In 3D seismic, training and test data are difficult and expensive to collect. 

 Moreover, data still undergo a deterministic and linear processing and interpretation which can 

differentially ―bias‖ the data, depending on the processing operator, on the choice of processing 

parameters and algorithms (survey geometry, trace editing, mute, deconvolution, spectral whitening, 

statics, v-analysis, wavelet/side lobes bandwidth filtering and tapering etc.). 

 

The Geophysics operates within the ―invisible environment‖ and is mainly involved in processing and 

interpretation of remote sensing signals. 

Seismic processing, inversion, interpretation and attributes analysis are mainly based on linear 

models.  Deep learning is gradually introducing the power of non-linearity also in these applications 

and this could open new perspectives to improve the accuracy of output results. 

Another powerful potential for neural networks applications is the study of relationships among 

properties which are considered linearly independent. An example of this could be elastic and 

resistivity parameters like for instance rigidity and resistivity. Former studies developed deterministic 

methods to examine such relationships (A.Vesnaver, G. Mavko, A. Piasentin), neural networks now 

allows to derive local relationships among such parameters. 

 

Recent developments in 3D seismic processing and inversion have been made to match models to the 

structural and rock-physics formations data of the subsurface. 

Latest examples are Full Wave Inversion (FWI) and Reverse Time Migration(RTM), but these 

algorithms, like also prestack depth migration on the common image gathers, are still based on linear 

multivariate regression gradient descent, due to the actual limited computer capabilities. 

Still here remain the indetermination of the intrinsic non-linearity and uncertainty present in every 

physical process, also considering that some methods are very sensitive to the initial input data of the 

velocity model. 

Geophysicists will have to increase their effort to ―un-bias‖ the processing and inversion algorithms 

and to develop more unsupervised classification algorithms and hybrid models to supply lack of 

training data.  

Geophysics is a domain where the effort on algorithms development, due to the expensive measure- 

ments, has  mostly been a priority.  

The impact of neural networks will also bring additional powerful algorithms and will finally honor 

the intrinsic non-linearity within the problems to be solved.   
 

Introduction 

 

The method in this study can be denominated as  supervised hybrid method because it takes advantage 

a powerful pre-trained ConvNet adapted to recognize a large variety of features but will use the 

trained parameters to elaborate the input maps combining an input of non-linear attributes to enhance 

resolution and indirectly parametrize the similarity of the input maps. 
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The results can also be analyzed through unsupervised methods,  creating new features as a 

combination of the output data that can be useful to classify or improve the interpretation of the raw 

data which have been supplied as an input. 

 

There are methods in computer vision that can have wide applications in geophysics. 

 

The philosophy in Computer Vision, reveals similarities with the presumed visual  human perception 

and visual knowledge process in which the image encoding originates from ―singularities‖ perception.  

 

In seismic attributes analysis the concept of singularities is related to the concept of waveform 

singularities and is defined by the Holder exponent h with values between  -1  and  ∞    which defines 

a Dirac Delta function (-1) a Heaviside unit step function (0) and a continuous analytical function   

(∞).  (Li and Liner, Smythe, Chopra and Marfurt). One of the most common examples is 

instantaneous frequency from waveform interference (Taner et al.). 

Further, the continuous function (h = ∞) can also be defined by local spatial  1
st
 and 2

nd
 derivatives. 

Transferring the attribute from the functional space to the horizon map the concept can be extended 

into the visual perception defining singularities as deviations of the visual radiation frequency from a 

monotonic trend. 

 

The parallelism between seismic attributes maps and images in the neural network convolutional 

process is also evident.  

Seismic attributes are mostly represented in color-coded maps where color frequency is simply the 

numerical value of the attribute. How can we detect singularities with neural networks ? 

   

 Singularities parametrization in computer vision is performed through ―Edge detection‖, where the 

Kernel parameters can be ―learned‖ within the back propagation optimization process. 

Therefore also in deep learning computer vision the dimension and dynamic of the receptive field 

detection drives the knowledge process. 

 

When we talk about seismic interpretation, we talk about seismic inversion and the development of 

seismic attributes during and after the seismic processing phase. 

These are parameters that are distributed within a 3D grid model, whose main intermediate task after 

seismic impedance will be to determine the elastic parameters of the formations. Their spatial 

configuration will determine the geological structural architecture of the reservoir under study. 

 

Seismic attributes are derived from amplitudes, frequencies and phases components of the reflections 

at a certain reflector horizon. In seismic multicomponent they will consider also S waves components 

and their polarization. 

The former classification subdivided attributes into: amplitude, complex and time attributes. The later 

development of research defined new concepts and sequences of parameters and each attribute was 

classified in function of the structural or rock-physical feature it would define (Marfurt, Chopra). 

Coherence, semblance and instantaneous frequency in thin layers mainly served to reconstruct the 

continuity and orientation of a reflector. Curvature, texture attributes are mainly used for anisotropy 

and fault detection. Spectral decomposition and wavelet transform are important for thin bed analysis 

to detect layers thickness and also elastic parameters, fluid type and mobility (Goloshubin). 

In many applications, amplitudes attributes are translated into color frequency and intensity (gray-

level), they were also used to predict texture matrix attributes (co-occurrence matrix): Energy, 

Entropy, Contrast, Homogeneity (Marfurt, Gao, West 2007) for further formational interpretations. 

Complex attributes derived from amplitude real trace and its Hilbert transform (complex trace) are the 

main components of many interpretation methods. 

Hampson-Russell implemented interpretation methods using complex attribute and derived 

parameters as linear applications in multiattribute linear regression analysis (Emerge). 

A linear relationship was first calculated at the well location between seismic attributes and a target 

log to distribute in all the 3D seismic volume. The ―less linear‖ attributes were discriminated through 
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a ―cross-validation‖ procedure and a series of  ―regression coefficients‖ were derived for the log 

calculation through the 3D cube. 

 

In this method mainly amplitude attributes were used, derived from the real trace, the complex trace 

in the imaginary plane and their envelope (signal strength) (Figure 1).   The same parameters are 

used in neural networks supervised methods as features in training examples. 

The main derived complex amplitude components used in these methods are: Signal strength, 

instantaneous phase, instantaneous frequency, average and dominant frequency, amplitude weighted 

cosine phase, amplitude weighted frequency, amplitude weighted phase, cosine instantaneous phase, 

apparent polarity, derivative instantaneous amplitude, second derivative instantaneous amplitude, 

integrated absolute amplitude. 

The successfully predicted target logs were: P-wave velocity, porosity, density, gamma ray, water 

saturation, lithology (seismic impedance). 

It was anyway the introduction of neural networks that fully honored the non-linearity of the 

prediction process with training data (attributes) and labels (target logs) in supervised applications. At 

the beginning fully connected neural networks were used and these were also successful in predicting 

missing logs and petrophysical properties on the 3D cube with improved accuracy compared to linear 

multivariate regression methods.  

 

 

HILBERT TRANSFORM

Courtesy Taner and Sheriff 1977

We take a snapshot on the complex plane 
which is perpendicular to the time wave
propagation direction at the time instant t. 
The angle q is called INSTANTANEOUS PHASE.
The velocity variation of q is the INSTANTANEOUS 

FREQUENCY  fi .

q =  g(t)   fi = d g(t) / dt

t

t g(t) 

g(t) _I_ 

 

 

Figure 1   Amplitude complex attributes  (Taner et al., 1979)  (readapted A. Piasentin  2016) 
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Method and Theory 

 

Color codes are widely used to visualize interpretation parameters  ( structural attributes, 

spectral decomposition, AVO rock physics attributes and further wide range of attributes like 

the above mentioned amplitude attributes  ). Color codes use three classes in RGB pixel 

intensity values to better visualize the attribute quantification for the interpretive phase. 

The best example in this context is the visual presentation of seismic impedance sections after 

prestack and poststack seismic inversion. 

For visual interpretive scope, parameters like seismic impedance,  - - , Vp/Vs or partial 

stack amplitudes  in AVO analysis are mainly translated into colors and mapped.   

In Computer Vision colors are also coded as RGB intensity values which range between 1 

and 255 for each base color.  

 

In computer vision applications we can build a Rank-3 Tensor of the 3 base colors one for 

each channel representing increasing color frequencies. 

Each base color can be mapped into one singular channel and the superposition of the three channels 

can allow further processing during the training phase. 

Within these building blocks of 3x255 pixel frequencies values, we can build every kind of high 

resolution images reproducing natural colors with the highest resolution. 

 

The workflow consists of preprocessing and normalize the seismic data after seismic processing and 

inversion to values between 1 and 255 for each RGB "radiation intensity" to visually reproduce the 

quantification of the specific attribute on the seismic map. The program will sequentially extract 

normalized amplitudes. These can be further processed into a continuous frequency and amplitude 

map. 

The input of two differentiated amplitude maps into the network provides the resolution enhancement 

due to the activation differentiation within the neural network. 

By examining the  activations at channels outputs it was possible to observe the enhanced resolution. 

Input attributes can also be preferentially non-linear attributes and this can result by using bin and 

superbin reflections or randomly shuffling the fold and subdividing reflections into 2 attributes 

classes. 

 

Visual Interpretation and Parametrization 

 

Visual representation of seismic attributes offers the possibility to an expert interpreter for direct 

interpretation of the data. However parametrization of the data within the neural networks processing 

offers the possibility to calculate additional parameters that give further indications on the structural 

and rock-physical properties of the formations and diagnostic attributes during the seismic processing 

and inversion process. This can be important for a quality control on the fold reconstruction, to 

examine which reflections belong to the same bin, for v-analysis and migration.  Other critical 

applications regard the parametrization of anisotropy and texture attributes like entropy, energy, 

contrast. Finally, parametrization can be integrated in the seismic imaging process, prestack depth 

migration, RTM, FWI, prestack and poststack seismic inversion. 

In this context, convolutional neural networks applications have the potential to improve 

interpretation methods, because they are supported by a wide range of available optimization 

algorithms with the flexibility of processing workflows and the parallelism of operations offered by 

the available programming frameworks.  

 

For this study ―Tensorflow‖ and partially ―Keras‖ was used for program implementation.  

These are high-level API (programming frameworks), written in Python and capable of running on 

top of several lower-level frameworks.  Keras itself, as API running on top of Tensorflow,  represents 

one of the highest level frameworks with eager execution. 
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Application of Convolutional Neural Network for the Seismic Attributes Mapping 

 

This study presents a method to combine two or more different attributes to enhance resolution and 

calculate further elastic properties to improve 3D seismic interpretation. Sequentially two tensors 

(STRUCT1 and STRUCT2) of different amplitude ranges are input into the VGG19 model. 

The two different amplitude attributes belong to coincident bin numbers of a reflector slice.  

The goal was to supply these attributes as input into the ConvNet VGG19 convolutional neural 

network to enhance the resolution and edge positioning of the structures identified after the seismic 

inversion. 

This first study presents the visual superposition of the effects with enhanced resolution. 

This illustrates a methodology that can be extended to other sorts of attributes for quality control. 

The name used for this output parameters is ― Neural Convolutional Seismic Amplitude Attribute 

Conv4_4-A‖ to emphasize the ―A‖ algorithm that creates them and the processing level at the stage 

of layer Conv4_4 output of a VGG19 architecture where it is produced.  

The network starts by analyzing and encoding  on the first layers, the low level features at the single 

bin resolution. 

The attribute map undergoes through convolutional and non-linearity RELU operations at each layer. 

The Network consists of a sequence of Convolutional and Max pooling layers. 

The filters are all of dimension f=3x3 and stride=1 and "same convolution" is used. 

All Max pooling have a width of  2x2 and a stride of s=2. This reduce the dimensions in output of the 

next layer by a factor 2. Therefore each further layer after pooling will have half  the n_h, n_w 

dimensions of the previous layer. 

The dimensions of layers activations here reported are the original ones reported in the original model 

(Symonian & Zisserman 2015) and represent the proportional decrease at each layer block due to the 

Max-pooling effect. 

 

Original VGG19  Model description 
 
input_1 map 224x224  64(3x3)filters  - same convolution  224x224x64 

block1_conv1   224x224 - 64 channels 

block1_conv2   224x224 - 64 channels 

block1_pool    f=2 s=2 

block2_conv1   112x112 - 128 channels 

block2_conv2   112x112 - 128 channels 

block2_pool    f=2 s=2 

block3_conv1   56x56   - 256 channels 

block3_conv2   56x56   - 256 channels 

block3_conv3   56x56   - 256 channels 

block3_conv4   56x56   - 256 channels 

block3_pool    f=2 s=2 

block4_conv1   28x28   - 512 channels 

block4_conv2   28x28   - 512 channels 

block4_conv3   28x28   - 512 channels 

block4_conv4   28x28   - 512 channels 

block4_pool    f=2 s=2 

block5_conv1   14x14   - 512 channels 

block5_conv2   14x14   - 512 channels 

block5_conv3   14x14   - 512 channels 

block5_conv4   14x14   - 512 channels 

block5_pool    f=2 s=2 

 

Pooling Layer used are Max pooling with f=2 and Stride=2 which will reduce the dimension of a 
factor 2. Non-linearity function used is RELU, which provides flexibility and speed to the program 
execution.  After each filter operation, a bias is summed (broadcasted) to the resulting channel and 
finally the RELU non-linearity is applied to form each channel of the next layer. 
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Extracting Conv4_4 - STRUCT1 and Conv 4-4 - STRUCT2  
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Activation function RELU 

 

The non linearity function is a RELU (Rectified Linear Unit) with activation  a = max(0,Z). 

The derivative is 1 for   Z  >= 0   and   0 for  Z < 0 .  

This activation with simple derivatives calculations will speed up gradient  descent (Figure2). 

 

 
 

Figure 2    RELU function adds non-linearity to produce the layer activation, used in ConvNet 

substituting the previously used Tanh  function 

 

Examples of Differentiated Amplitude maps  

 

This is an example of a color visualization of  differentiated amplitude maps to input additional 

structural information to the ConvNet (Figure 3 and Figure 4). 

 

     
 

Figure 3 and 4   Two differentiated amplitude input maps STRUCT1and STRUCT2. Highest 

amplitudes are presented in red , lowest amplitudes in violet. 

 

 
The amplitude map STRUCT1  was used as input to the VGG19 ConvNet together with the scaled 

amplitude map STRUCT2 to produce the output high resolution amplitude attribute . 
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Output  map 

 

The generated map (output map) is initialized with random amplitudes. 

Sequentially two digital amplitude maps of common bin reflections, belonging to the same reflector 

horizon but each with individual amplitude content, are input into the ConvNet. Each of them undergo 

different processing steps. 

The structural affinity is reached minimizing the output layer activations of the input image and the 

generated image. The higher resolution is reached by minimizing the unnormalized cross-covariance 

between activations between adjacent channel of the second input map and the generated map.  

(Figure 5). 
 

 
Figure 5  Schematic cross-covariance between activations across channels 

 

Loss Function and Cost Function 

 

STRUCT1 loss function 

This is the sum of the difference of activations in corresponding layers between the  generated map 

initially implemented as white noise and of the input map STRUCT1. During gradient descent this 

difference is minimized. 

Equation 1 

a
(P)

   =   activation of layer  Conv4_4 in the map STRUCT1 

a 
(S)

  =   activation of corresponding  layer  in the output generated map 

d = normalization factor for the total number of (activations x channels)
2
   * 4 

 

 

STRUCT2  Loss Function 

 

This is calculated from the unnormalized cross-covariance matrix across activations of nearby 

channels in corresponding layers of the input map of STRUCT2 and the output  generated map. 

covariance matrix is of  n_c x n_c dimension (n_c = number of channels in the layer where the matrix 
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is calculated).  For this work the algorithm was applied to layer Conv 4_4 of STRUCT2 and of the 

output map. 

During gradient descent the difference in covariance matrices Ghk
(P) 

and Ghk
(S)

 are minimized,  

producing the output attribute on the generated map with enhanced structural resolution (Equation 2). 

Equation 2 

Ghk
(P) 

 = unnormalized cross-covariance matrix for layer conv 4_4 of struct2 map  

Ghk
(S)

  = unnormalized cross-covariance matrix for layer conv 4_4 of output  generated map h,k = 

height and width of channels  

c = number of channels 

d = normalization factor for the total number of (activations x channels)
2
   * 4 

 

Total Cost Function 

 

The hyperparemeters  and   are used to enhance the contribute of  input attribute STRUCT1 or  

STRUCT2 on the output generated map. 

During gradient descent the total cost function is minimized in order to bring together the effect of the 

two input attributes in order to generate the new covariance attribute in the output map. 

 Equation 3 

J_Cost  = Total loss / cost function 

 J_Struct1 =  loss function of STRUCT1 

 J_Struct2  = loss function of STRUCT2 

   =  Hyperparameter , weight of the loss function of STRUCT1 

   =  Hyperparameter , weight of the loss function of STRUCT2 

 

Program Optimization 

 

For the model implementation Adam optimization was used with 500 Epochs on minibatches. Adam 

is a very flexible optimization algorithm which speed up the calculations and showed a great 

flexibility on a various range of neural networks architectures. It combines gradient descent with 

Momentum and RMSprop, by taking advantage of running averages on the gradients, and optimizing 

the directivity versus the global minimum of the cost function. It provides smoothing the orthogonal  

directivity components on gradient descent iteration steps, smoothing oscillations and concentrating it 

to the maximum gradient direction. This also allows to use larger learning rates. 
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α    and  β   in this new context (in italic type) are different hyperparameters as those used before in 

the total cost function . 

 

The first step is the implementation of the momentum computation is expressed by the following 

equations 4: 

 

Equations 4 

 

l varies  from 1 to L where L : the number of layers 

β : hyperparameters that control the exponentially weighted averages  

α : learning rate 
dW :  derivative of cost function with respect to w 
db :   derivative of cost function with respect to b 

 
 

Adam optimization is a combination of Momentum and RMSprop. 

First exponentially weighted average of past gradients are computed and stored in a variable v 

(momentum), then  bias correction is performed to get:  vcorrected 
Bias correction is applied to avoid a defect of the running averages algorithmus where the initial part 

of the function is ―biased‖ in excess with respect to the real average values. 

In a second step, the exponentially weighted average of the squares of the past gradients are computed 

and stored  in a variables s (RMSprop). 

After performing bias correction in s  we can get:   scorrected 

 

 

 

 

 

 

 

Momentum 
 
 
 
 
RMSprop 
 
 
 
 
Adam 

 

Bias correction 
 
 
 
 
Bias correction 
 
 
 
  Equation 5 
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The update rule is, for l=1,...,L 

L:  number of layers  

 β1 and β2:  hyperparameters that control the two exponentially weighted averages  

α:  learning rate  

ε:  is a very small number to avoid dividing by zero 

 

 

 

 
Output results 

 

The result show an improved resolution of the amplitude attribute in the studied area defining 

additional structural lineaments (Figure 6). 

 

  
 

Figure 6 .  This is the output of the ConvNet optimization processing, with evident improvement in the 

3D seismic attribute resolution   

 

 

 

 

 

Application of structural filtering to the output map 

 

Structural filter:  black/white high resolution (Figure 7 and Figure 8). 

The black-white map shows the output map with enhanced structured filtering in the main anisotropy 

direction and compares the input image before the convolutional neural network processing with the 

image in output of the ConvNet used for this study.  
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Figure 7  Input image before ConvNet                     Figure 8   Output image after ConvNet                        

processing                                                                  processing and filtering with enhanced resolution 

                                                                                    

The resolution have increased. This higher frequency component represents an edge-detector. 

 

Conclusions 

 

This  study is a provisional result in one research field conducted at the Neural-Geophysics Lab in 

Augsburg. 

Based on different channel operations on features identification, structural differentiation is performed 

and transmitted in output to the generated map, enhancing this way the resolution of the amplitude 

attribute. 

This shows how combining 3D seismic attributes through a convolutional neural networks, a new 

attribute with improved resolution can be created.  

New studies with improved algorithms shows even more powerful capabilities by combining seismic 

and petrophysical attributes with the goal of improving resolution in mapping of subsurface structures 

and their inherent rock physical and petrophysical parameters. These studies can have an important 

impact in seismic/petrophysical reservoir characterization and quality control. 
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